3.6.73 \(\int \frac {\sqrt {a+b x^n+c x^{2 n}}}{x^2} \, dx\) [573]

Optimal. Leaf size=149 \[ -\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \]

[Out]

-AppellF1(-1/n,-1/2,-1/2,(-1+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b*x^n+c*
x^(2*n))^(1/2)/x/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1399, 524} \begin {gather*} -\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

-((Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[-n^(-1), -1/2, -1/2, -((1 - n)/n), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
 (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + S
qrt[b^2 - 4*a*c])]))

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1399

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a +
 b*x^n + c*x^(2*n))^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^
2 - 4*a*c, 2])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[
b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^n+c x^{2 n}}}{x^2} \, dx &=\frac {\sqrt {a+b x^n+c x^{2 n}} \int \frac {\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}{x^2} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=-\frac {\sqrt {a+b x^n+c x^{2 n}} F_1\left (-\frac {1}{n};-\frac {1}{2},-\frac {1}{2};-\frac {1-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{x \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(365\) vs. \(2(149)=298\).
time = 0.48, size = 365, normalized size = 2.45 \begin {gather*} \frac {2 (-1+n) \left (a+x^n \left (b+c x^n\right )\right )-2 a (-1+n) n \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (-\frac {1}{n};\frac {1}{2},\frac {1}{2};\frac {-1+n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )+b n x^n \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {-1+n}{n};\frac {1}{2},\frac {1}{2};2-\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )}{2 (-1+n)^2 x \sqrt {a+x^n \left (b+c x^n\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

(2*(-1 + n)*(a + x^n*(b + c*x^n)) - 2*a*(-1 + n)*n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*
c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[-n^(-1), 1/2, 1/2, (-1 + n)/n, (
-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + b*n*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] +
 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(-
1 + n)/n, 1/2, 1/2, 2 - n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])/(2*(-
1 + n)^2*x*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {a +b \,x^{n}+c \,x^{2 n}}}{x^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x)

[Out]

int((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x^{n} + c x^{2 n}}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n+c*x**(2*n))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x**n + c*x**(2*n))/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+b\,x^n+c\,x^{2\,n}}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^n + c*x^(2*n))^(1/2)/x^2,x)

[Out]

int((a + b*x^n + c*x^(2*n))^(1/2)/x^2, x)

________________________________________________________________________________________